

TKA and LIGAMENT BALANCE

- If ACL & PCL preserved: simple resurfacing if no deformation; more complex in other cases
- If ACL & PCL sacrificed : how to fill trapezoidal gap
- If ACL only sacrificed : convexity laxity
 - = > fill gap without release: let medial laxity (varus)
 - => fill gap with release: PCL is too tense and vertical
 - => fill gap with medial & PCL release: spaced height too high (=> low patella)
- In all cases question is to determine sot tissue envelope tense

Consider:

- The ACL is resected in majority of TKA
- Removing the ACL changes the kinematics of the knee
- Total knee patients are effectively ACL deficient
- What can we learn from the study of ACL deficient knees?

Research Behind the Design

- Analysis of extracted tibial plateaus of knees without the ACL showed a central point of pivot about the lateral condyle
- After ACL rupture evolution is medial arthritis of the knee

Research Behind the Design Tracking the contact points of many different implant designs available today has shown lateral pivot patterns regardless of design type. Accuracy + 1° rotation + 0.5 mm translation Accuracy - 1° rotation - 1° rotation - 2° ropot op Retrieval Series - 7000 insert (Stryker) Accuracy - 1° rotation - 1° rotat

Conclusions: - 3DKnee provides intrinsic AP stability to enhance strength and ROM (ACL Substituting Knee) - Very positive early clinical and functional (ROM, strength) results - Enhanced contact areas and reduced cocontraction should reduce wear and enhance implant longevity - But how to balance correctly in front plane?

GAP BALANCE: eLIBRA System

- To achieve stability through ligament balancing
- To achieve optimal flexion gap
- With good patellar tracking
- When anatomic landmarks (like transepiconylar axis, Whiteside's line) are difficult to precise

GAP BALANCE: eLIBRA System

- Dynamic system used after proximal tibial and distal femoral resections
- Force sensor in flexion (same thickness than TKA)
- After reducing patella
- Set pressure on each plate to balance them by rotating the dial until the medial and lateral forces are equal
- If rotating isn't suffisant, soft tissues release (3D Knee) or bone cuts change

GAP BALANCE: eLIBRA System

- External rotation isn't pre-determined
- Avoid mistake in case of deficiencies of posterior lateral femoral condyle
- Patellar tracking could be checked before final trials
- Allows soft tissue toi dictate optimal femroal component position
- Allows choice of « stiff or not knee » according to surgeon choice with pressure : 3 to 8 pounds

CONCLUSION

- Ligament balance is fundamental
- In sagittal plane : ACL/PCL preserving with coherent plate design
- In frontal plane according to surgeon's choices :
 - Orthogonal or not spaced gap
 - Soft tissue balance or assymetric resections
 - In all cases to enhance flexion and patellar track
- Various tools exist. E-Libra is one of them, simple to use, repetitive and reliable